Investigation and Optimization of Miniature Fan-Based Impactors

²Jennifer L. Stepnowski, ¹Eric Chang, ¹Chris Kendziora, ¹R. Andrew McGill, ³Hylton McWhinney, ⁴Viet Nguyen, ¹Stanley V. Stepnowski, ²Evgueni Sokolovski, ²Derrick Thiel

U.S. Naval Research Laboratory, Code 6365, Washington DC 20375¹
Nova Research, Inc., Alexandria, VA 22304²
Prairie View A&M University, Prairie View, TX 77446³
Geo-Centers, Inc., Fort Washington, MD 20744⁴
Tel: (202) 767-8533; Email: jennifer.stepnowski@nrl.navy.mil

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 17 NOV 2004		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER			
Investigation and (npactors	5b. GRANT NUM	o. GRANT NUMBER			
			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)			5d. PROJECT NUMBER			
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Naval Research Laboratory, Code 6365, Washington DC 20375				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
	otes 49, 2004 Scientific C land on 15-17 Nove		_			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 19	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Background

- Collectors are an important component of a biodetection system to concentrate biological particles for detection
- Need a small and low power option to interface with increasingly smaller biosensors
- Other desirable features for biocollector design:
 - High collection efficiency in the 1 10 micron range
 - High sample volume
 - Inexpensive, disposable
 - Simple operation
 - Simple recovery

Fan-Based Impactor

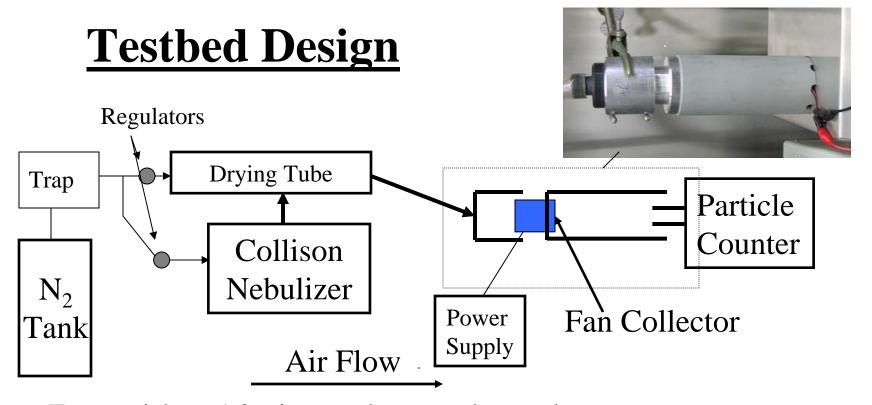
Example Fan Specification:

Weight 15 - 34g

Rated Voltage 6-12V

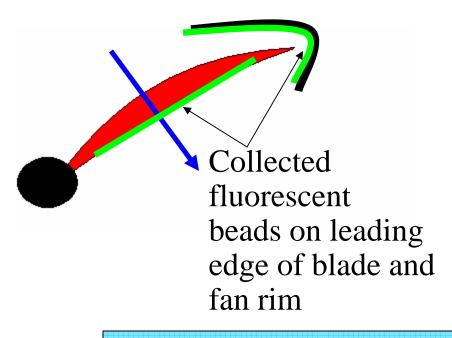
Imax 600 mA

Power 0.2-9W


FR l/min 100 L/min

MTTF up to 4000 hrs

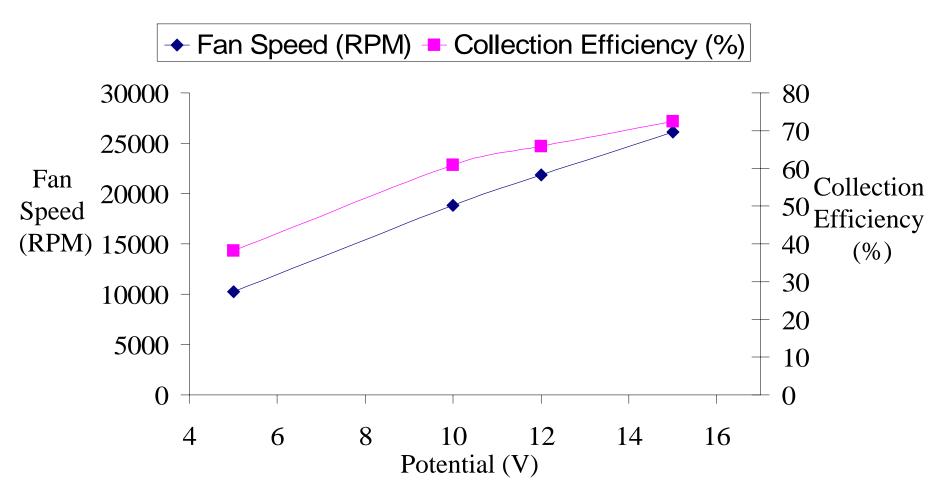
 $T/^{\circ}C$ -20 to +65


A high flow vane-axial fan utilized as an impactor provides many desirable biocollector features.

- Test particles 1.0 micron polystyrene latex spheres
- Flow rate of system 120 LPM
- Met One 3315 Airborne Particle Counter with seven bin sizes (range 0.5 25 microns) monitor bin 1.0 2.0 μm
- Collection efficiency calculated by measuring particles not collected
- % Collection Efficiency = $[(C_o C_{fan})/C_o]*100$;
- C_o = baseline particle count and C_{fan} = particles that pass through the fan

Mechanism of Fan Collection

Direction of Particle Motion


Fan showing fluorescent PS

Impaction on the fan blades and rim is the mechanism of collection.

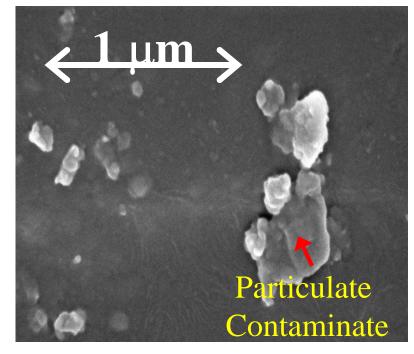
Collection Efficiency Experiments Polystyrene Latex Spheres

- Single fan with rated voltage of 12V
- Fan washed with isopropanol and allowed to dry in a flow bench to minimize dust particles
- 67 + 2% collection efficiency at 12V
- •72 ± 3% maximum collection efficiency achieved by overdriving to 15V

Effect of Fan Speed on Particle Collection

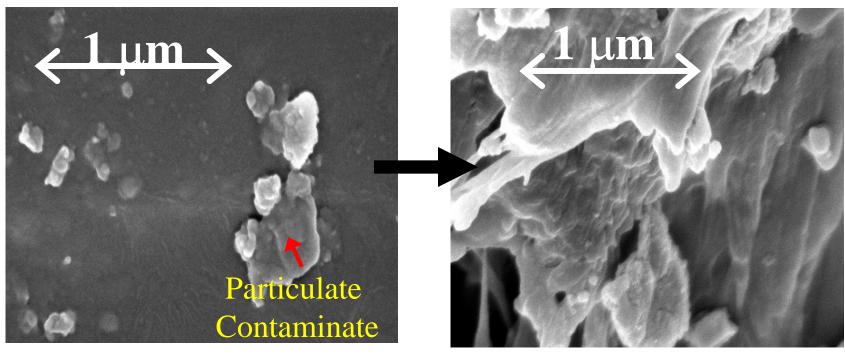
An increase in applied voltage increases the fan speed which leads to improved collection efficiency.

Preliminary Collection Experiments with BG Spores



The RAPID PCR

- Collection efficiency of greater than 80% for 1µm BG spores (with Jay Eversole and Cathy Scotto, Code 5611 at NRL)
- 500 µl water used to process the polystyrene beads and BG spores off the fans
- Recovery and detection of BG spores confirmed with RAPID
 PCR system


Surface Modification Effects on Collection Efficiency

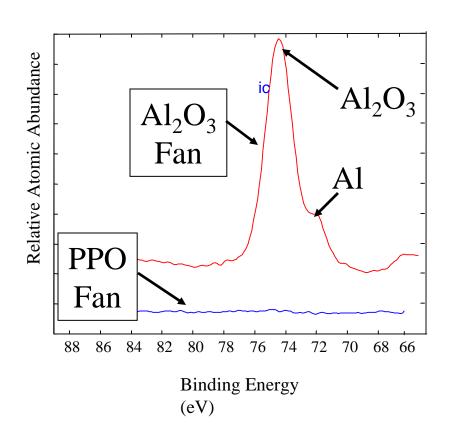
- As received, fan surface is a dense smooth collection substrate
- Modify fan surface to change surface area and energy
- Modifications: surface roughening, Al₂O₃, Ti

SEM image of standard fan blade surface

Surface Modification: Sand Blasted Collectors

SEM image of standard fan blade surface

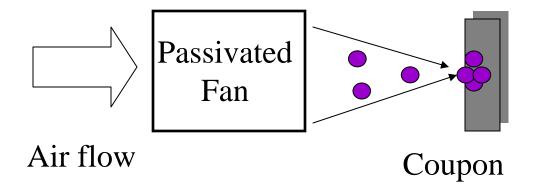
SEM image of sand blasted PPO fan blade


- Preliminary experiments show 0 20% improvement
- Need more rigorous control of surface roughening

Surface Modification: Al₂O₃ and Ti Coated Collectors

- CVD used to grow aluminum oxide film directly on to PPO impellers
- XPS used to verify the oxide layer
- Titanium films were also investigated

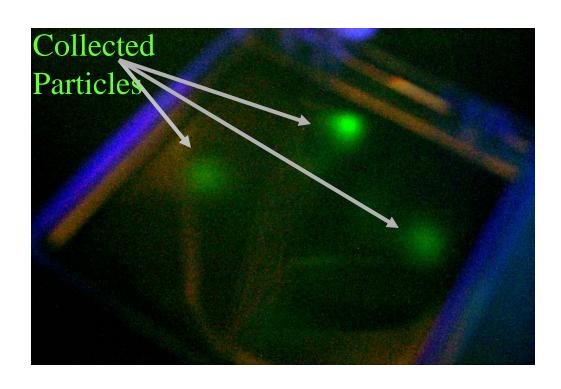
 Al_2O_3 coated fan


XPS of aluminum oxide fan

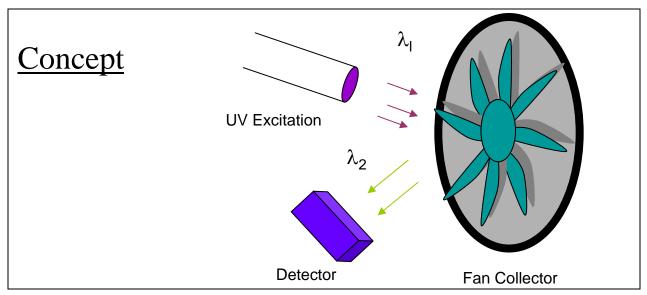
Comparison of PPO, Al₂O₃ and Ti Collectors

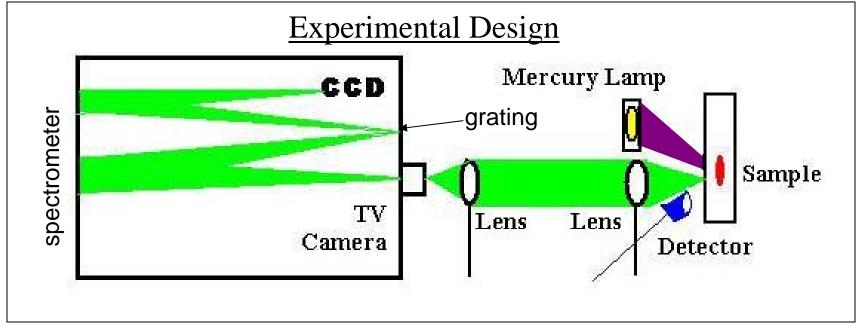
Collection Efficiency (%) at 10,000 RPM				
PPO	Al_2O_3	Ti		
37 <u>+</u> 6	36 <u>+</u> 1	32 <u>+</u> 6		

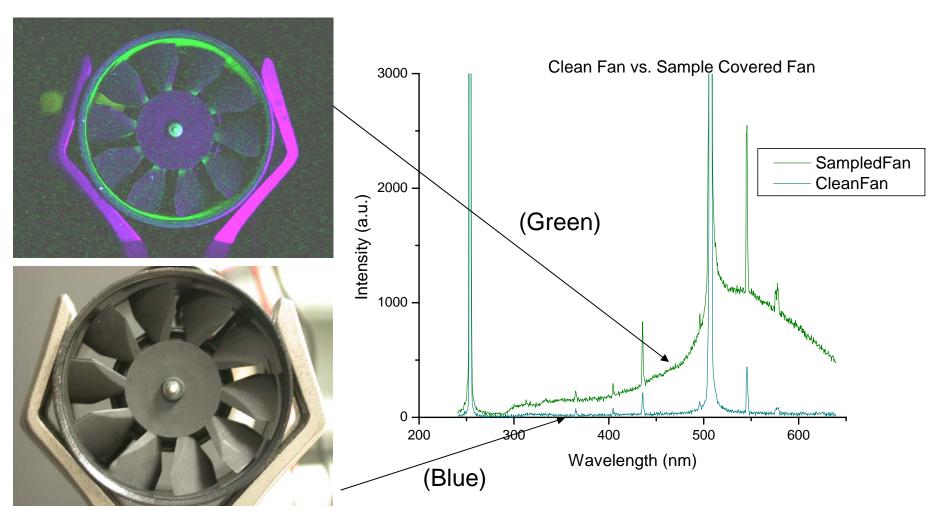
- All the surfaces have the same collection efficiency within the error
- Due to high flow rates, the particles have high linear velocity and all surfaces appear the same


Coupon Impactor Design

- Fan used as impeller instead of impactor
- Decrease impact force for improved collection and less re-bounce with softer surface
- Concentrate particles in smaller footprint area for ease of recovery or analysis
- In some cases may be able to culture directly on coupon


Coupon Collector Proof-of-Concept Experiment


- One micron
 fluorescent
 PSLs collected
 on coupon aft of
 the fan exhaust
- Four areas of collection because of geometry of fan


One micron fluorescent PSL spheres collected on planar coupon illuminated using a 245nm lamp

Simple Fan Biotrigger

Fan Biotrigger Proof of Concept

Conclusions

- Fan-based impactor can be used as a low power, small, disposable biocollector.
- Collection efficiencies of >70% have been demonstrated for PSLs and BG spores.
- Increasing fan speed increases collection efficiency while surface material has little effect.
- Coupon collection shows promise as a secondary route to low power, higher efficiency collector.
- Low cost biotrigger is possible with fan coupled to inexpensive light source and detector.

Future Directions

- Optimize collection efficiency by examining variables
 - blade pitch
 - surface roughening
 - surface materials: softer surfaces
- Further investigate coupon collection to characterize and optimize collection efficiency
- Investigate viability

Acknowledgements

- Jerry Bottiger and RDECOM
- Jay Eversole, Cathy Scotto, Alan Huston, Vasanthi Sivaprakasam, NRL
- Safety Tech International and Micronel US

